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Continuous and accurate monitoring of agricultural landscapes is crucial for understanding crop phenology and
responding to climatic and anthropogenic changes. However, the widely used optical satellite remote sensing is
limited by revisit cycles and weather conditions, leading to gaps in agricultural monitoring. To address these
limitations, we designed and deployed a Near Surface Camera (NSCam) Network across China, and explored its
application in agricultural land monitoring and achieving climate-smart agriculture (CSA). By analyzing the
image data captured by the NSCam Network, we can accurately assess long-term or abrupt agricultural land
changes. According to the preliminary monitoring results, integrating NSCam data with remote sensing imagery
greatly enhances the temporal details and accuracy of agricultural monitoring, aiding agricultural managers in
making informed decisions. The impacts of abnormal weather conditions and human activities on agricultural
land, which are not captured by remote sensing imagery, can be complemented by incorporating our NSCam
Network. The successful implementation of this method underscores its potential for broader application in CSA,
promoting resilient and sustainable agricultural practices.
1. Introduction

Climate-smart agriculture (CSA) is an integrative approach designed
to address the challenges and opportunities presented by climate change
in the agricultural sector [1–3]. The concept of CSA is significant as it
addresses the need to adapt agricultural practices to the changing climate
while also striving to mitigate its effects [1]. Specifically, CSA aims to
tackle three main objectives: sustainably increasing agricultural pro-
ductivity and incomes; adapting and building resilience to climate
change; and reducing and/or removing greenhouse gas emissions [1].
CSA is particularly important for smallholder farmers who are more
vulnerable to climate change due to their limited resources and capacity
to adapt [4]. To achieve climate-smart agriculture on a global scale, ac-
cess to information on agricultural production for monitoring and eval-
uation is the first step.

Remote sensing technologies have been widely used in agricultural
fields due to their advantages in observing large areas of land surface in
time, providing valuable data for monitoring and managing agricultural
practices. By analyzing spectral reflectance from optical images, vege-
tation indices such as the Normalized Difference Vegetation Index
(NDVI) can be computed to assess plant vigor and estimate crop yields
[5]. This capability enables timely interventions to mitigate the adverse
effects of climate change on crop production. In addition, remote sensing
provides spatial and temporal soil moisture information through sensors
like Synthetic Aperture Radar (SAR) [6]. This information helps farmers
schedule irrigation more effectively, reducing water wastage and
improving crop resilience to drought conditions. On a larger scale,
remote sensing facilitates the detection of changes in agricultural land,
forest cover, and pasture areas over time [7]. These insights are crucial
for developing strategies to mitigate deforestation, promote sustainable
land management, and enhance carbon sequestration.

Depending on the platform, there are usually two sources of remotely
sensed datasets including satellite and Unmanned Aerial Vehicle (UAV)
imagery. Satellite imagery and UAV systems have distinct advantages
and limitations. Satellite imagery provides global coverage, which is
particularly valuable for large-scale assessments [8–11]. However, freely
available satellite data typically offer only medium spatial resolution and
are constrained by temporal details, with revisit times often ranging from
one to two weeks [12]. In contrast, UAVs offer greater flexibility and can
achieve high spatial resolution at the meter level, enabling detailed,
site-specific observations [13–15]. Nevertheless, the scalability of UAVs
is limited, making them less suitable for extensive regional or global
monitoring efforts [16]. Although remote sensing technology has
advanced significantly, access to high-resolution data can still be costly
and limited, especially for smallholder farmers in developing regions
[17]. Also, the interpretation and application of remote sensing data
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require technical expertise that may not be readily available to all
farmers. More importantly, remote sensing imagery needs to be com-
plemented with ground-based observations for accurate validation and
calibration [18–20].

Near surface camera technology holds significant potential for agri-
cultural monitoring, offering high-resolution and real-time imagery that
will be an excellent complement to existing remote sensing data sources
mentioned above (Fig. 1) [21]. Due to the differences in observation
angle and distance, high-resolution photos provided by the near surface
camera can be more easily interpreted and can be used as ground truth to
validate results from satellite observations [22]. When applied to CSA,
near surface camera technology offers a range of benefits including
precise monitoring of crop health, early detection of diseases and pests,
and the ability to estimate yield, which are crucial for making informed
decisions in agricultural management. However, despite its potential,
there are challenges and areas of improvement that need to be addressed
to fully harness its capabilities in CSA.

This study first introduces the concept of using near surface cameras
for agricultural phenological monitoring and the advancements in their
application within CSA. A detailed description of the design and
deployment of our agricultural phenological monitoring network
(NSCam) is then provided, covering the design concept, image processing
methods, preliminary empirical results, and integration with remote
sensing technology. Finally, the advantages of NSCam Network in agri-
cultural land changes are demonstrated.

2. Near surface cameras for phenological monitoring

2.1. Importance and challenges of phenological monitoring

The phenological behavior of flora and fauna is one of the most
evident outcomes of changes in environmental characteristics and pro-
cesses. Phenological behaviors of the same species can vary significantly
across different landscapes [23,24]. Vegetation phenology refers to the
seasonal changes in plant growth and development, encompassing a se-
ries of stages such as bud burst, growth, flowering, fruiting, and leaf fall
[25,26]. These phenological phenomena can influence the structure and
function of entire ecosystems and serve as crucial ecological indicators
for studying ecosystem and global climate changes [27–31]. However,
even with the use of satellite remote sensing products, large-scale
regional vegetation phenology observations at appropriate temporal
scales remain challenging [23,29]. Advances in imaging technology have
revolutionized the monitoring and study of plant phenology, agricultural
productivity, and environmental changes, with near surface cameras
playing a critical role in modern agriculture and environmental
monitoring.
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Phenological data are vital for identifying the environmental control
factors in different ecosystems. They help identify key environmental
factors affecting the seasonal behaviors of specific species or commu-
nities, revealing trends in biodiversity changes under different environ-
mental conditions. This information is crucial for predicting the impacts
of future climate change on ecosystems [32]. Analysis of phenological
data also improves the accuracy of ecological models by accounting for
dynamic changes over time and space. Comparing model predictions
with observed phenological patterns helps identify deficiencies in
models, which can then be adjusted and optimized accordingly [33]. This
model evaluation method, based on phenological data, enhances the
reliability and utility of ecological models.

2.2. Advances in imaging technology with near surface cameras

Advances in imaging technology have provided new approaches for
acquiring phenological data, transforming the way plant phenology,
agricultural productivity, and environmental changes are monitored and
studied [34]. Traditional vegetation phenological monitoring involved
either small-scale, high-precision manual measurements or large-scale,
low-spatial-resolution satellite remote sensing. With the continuous
advancement of digital photography technology, low-cost and efficient
near surface cameras that provide long-term high-resolution near-surface
remote sensing data are increasingly used to monitor plant phenology
[35]. High-frequency digital camera images and vegetation indices allow
better tracking of plants' phenological responses to environmental
changes, aiding the development of improved predictive phenological
models [36]. Digital camera images facilitate individual organism
observation, long-term canopy monitoring, automated phenological
monitoring from regional to continental scales, and tracking responses to
experimental treatments [36–39].

2.3. Applications of phenological cameras

As a specific application of near surface cameras, phenological cam-
eras are specially designed to capture the dynamics of terrestrial flora and
fauna. These cameras are frequently used in ecological and environ-
mental research to track the timing of events such as leaf emergence,
flowering, and senescence [40]. They provide daily updated image se-
quences, crucial for understanding plant growth patterns, assessing crop
growth conditions, and predicting crop yields [41]. Typically fixed at
Fig. 1. A schematic diagram of land system monitoring based on near-surface camera
monitoring of abrupt changes, gradual changes, and seasonal variations caused by c

3

research sites, these cameras capture images to analyze patterns and
trends in vegetation changes over time [23,42].

Time-lapse and interval cameras are important types of phenological
cameras for monitoring phenology. Interval cameras automatically cap-
ture photos at preset time intervals. In agriculture, time-lapse cameras
provide visual records of plant growth, crop development, and landscape
changes due to seasonal or climatic variations [43,44]. These visual re-
cords help identify growth patterns and potential issues related to plant
health and productivity [45,46]. Interval cameras, similar to time-lapse
cameras, are often used where precise scientific measurements are
needed, ensuring consistency in image capture timing. These cameras
can be programmed to capture images at specific times of the day, which
is particularly useful for studies requiring consistent lighting conditions
[47,48]. Each type of camera has its unique advantages and application
scenarios, collectively providing powerful tools for better understanding
and managing natural environments and agricultural systems.

Vegetation phenology is a crucial factor in agricultural production,
supported significantly by phenological cameras, which are integral to
climate-smart agriculture. In agriculture, the application of vegetation
phenology primarily includes crop planting, management, and harvest-
ing. For instance, historical data observations can predict when specific
crops will enter various growth stages in particular regions, aiding in
crop yield prediction, farm management, and understanding crop re-
sponses to environmental changes [41,49,50]. Monitoring phenological
changes in vegetation allows farmers to adjust irrigation, fertilization,
and pest control activities timely, ensuring crops grow under optimal
conditions [51]. For example, by monitoring soil moisture changes with
phenological cameras and integrating with microcontrollers and smart
irrigation technology, automated irrigation can be achieved. This method
saves farmers time, money, and labor while ensuring the rational use of
water resources in water-scarce areas [52]. Additionally, analyzing the
phenological characteristics of different crops and their relationship with
climatic factors can provide scientific bases for crop rotation and inter-
cropping, improving land use efficiency and crop yield [53]. Phenolog-
ical cameras provide continuous high-resolution image data, enabling
scientists and agricultural practitioners to more accurately monitor plant
growth cycles, crop growth conditions, and vegetation changes,
enhancing our understanding of crop dynamics and supporting sustain-
able agricultural practices.

The PhenoCam Network is an evolving open-source tool designed to
study the spatiotemporal variability of phenology at ecosystem scales
s. The integration of satellite, UAV, and near-surface remote sensing enables the
limate change and human activities.
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[54,55]. It is currently an effective tool for conducting phenological
monitoring from individual organisms to ecosystems, regional, and
continental scales. By monitoring seasonal changes in plants, such as leaf
emergence and fall and flower opening, the PhenoCamNetwork provides
essential data on ecosystem dynamics [44,56]. These data are crucial for
understanding the impacts of global climate change on ecosystems,
helping scientists better predict future changes. Moreover, the
open-source nature of the PhenoCam Network encourages global
research collaboration in phenology, promoting knowledge sharing and
innovation [57].

The application of phenological cameras extends beyond crop moni-
toring to forest management and biodiversity conservation. For example,
data captured by PhenoCam help researchers better understand plant
growth patterns in forests and how these patterns are affected by global
climate change [58]. These technologies can also be combined with
satellite data to enhance spatial resolution and temporal details moni-
toring. For instance, integrating phenological camera data with
Sentinel-2 and MODIS satellite data provides detailed information on
crop growth conditions, crucial for precision agriculture and crop yield
prediction [59,60].

3. NSCam network: design and data processing

3.1. NSCam design

The NSCamNetwork encompasses hundreds of cameras distributed in
China. These cameras have adopted our new design for enhancing the
application of CSA. Firstly, each NSCam is capable of collecting data at
hourly intervals and can be remotely activated to capture additional data
at any time, facilitating real-time observations. This high-frequency data
collection provides robust monitoring data for agriculture, ensuring the
NSCam Network can swiftly and accurately track the impacts of climate
change and human activities on agricultural production. The image data
captured by each NSCam includes three bands (red, green, blue) at a
resolution of 2560 � 1440, providing clear and detailed insights into the
vegetation growth in the monitored regions. For managing and utilizing
the collected data, each NSCam is equipped with a subscriber identity
module (SIM) card utilizing the 4th generation mobile communication
technology (4G). Leveraging China's extensive communication network
to upload data in real-time to a cloud platform, the NSCam eliminates the
need for physical network cables or WiFi connections. Additionally, the
NSCam Network includes a cloud platform which aggregates and man-
ages both historical and real-time data from all cameras, supporting the
construction of phenological time series for future analyses. Addressing
power supply challenges in the field and in agricultural settings, the
cameras use alternating current (AC) power supplied by erected tower
poles and have built-in batteries providing Uninterruptible Power Supply
(UPS) backup in case of unexpected power outages. For installation sites
without access to power, external solar panels can be used to power the
cameras. With at least 3 h of good sunlight per day, these solar panels can
support the collection of 24 images per day.

3.2. NSCam image processing

The images collected by each phenological camera in the NSCam
Network are uploaded in real-time to a cloud platform. This study pro-
cesses all images from different cameras on the cloud platform into dense
time series for the study period, thereby obtaining agricultural land
change data for the monitored areas. To detect crop phenology and
growth status, this study employs the Green Chromatic Coordinate (GCC)
index, which quantifies vegetation color changes based on the green
characteristics of the vegetation. Considering the spatial heterogeneity of
different land cover types and vegetation in each image, we divide each
image into a 10 � 10 grid. For each grid cell, we calculate the average
value of GCC using Eq. (1), and then construct GCC time series to
represent crop phenology and growth status.
4

GCC¼ Green
Red þ Greenþ Blue

(1)
Theoretically, we can construct hourly GCC time series for the study
period. However, to avoid noise during nighttime, we retain only the
hourly data collected from 8:00 to 17:00. Additionally, the daily GCC
time series for all grid cells are calculated using the 90th percentile
approach, which will be further used for matching with remote sensing
imagery. Furthermore, considering the widespread success of PhenoCam,
this study also explores integrating NSCam with PhenoCam. Specifically,
for observation points equipped with both types of cameras, we match
images captured by PhenoCam and NSCam during the same phenological
periods with linear regression. This allows us to supplement the NSCam
Network with historical data from PhenoCam, thereby extending the
temporal coverage and enhancing the monitoring density of the CSA.
3.3. NSCam combined with remote sensing

Optical satellite remote sensing data has long been a crucial source for
large-scale, long-term land surface and agricultural phenological moni-
toring. However, limitations due to satellite revisit cycles and weather
conditions (e.g., clouds and rain) in monitored areas often hinder the
formation of continuous daily time series observations throughout the
year, significantly affecting the accuracy of phenological detection. The
NSCam Network effectively addresses these issues as it is less affected by
cloud cover and weather conditions, and offers dense and flexible data
acquisition intervals, providing hourly observation data. The primary
challenge in integrating NSCam data with remote sensing imagery lies in
spatial matching despite differences in data acquisition angles, spatial
resolutions, and spatio-temporal heterogeneity. To address this, we
improved the data fuse algorithm upon the principles and assumptions
proposed by Tran et al. [61]. Specifically, the two-band Enhanced
Vegetation Index (EVI2) was selected as an example to construct the time
series using data fusion. EIV2 is designed to be less sensitive to atmo-
spheric conditions and soil background noise. It has been proved to have
better correlation with biophysical parameters like Leaf Area Index (LAI),
providing more accurate data for ecosystem and agricultural studies [62,
63]. With EVI2, the adopted principles and assumptions are as following:
1) EVI2 in a pixel is a linear mixture of contributions from green vege-
tation, colored vegetation, and exposed surface background; 2) GCC in a
grid is similarly a mixture of these components; 3) EVI2 and GCC time
series are temporally correlated; 4) EVI2 time series in a pixel can be
geometrically scaled to the GCC temporal shape in a grid with similar
surface fractions; 5) Time lags in vegetation growth due to microclimate
variations must be considered; 6) EVI2 time series in a pixel can match
GCC temporal shapes in nearby grids with surface digital camera data. 7)
Canopy cover for the same vegetation type can vary greatly between
years and locations due to weather and growing conditions.

Based on these principles and assumptions, we integrated NSCam and
remote sensing images to form a fused daily observation time series using
the following steps: 1) Identify the observation region of the NSCam
based on the installation location and observation angle; 2) Retrieve all
optical remote sensing images within the observation period for the
monitoring region, using Sentinel-2 data as an example; 3) Perform
remote sensing image preprocessing, such as cloud removal, to obtain all
available EVI2 observations during the observation period; 4) For each
available observation date, obtain all images captured by NSCam to
calculate the daily GCC values, as introduced in Section 3.2, forming
pairs of EVI2 images and GCC images for the dates; 5) For the target pixel
in the Sentinel-2 imagery, retrieve its remote sensing EVI2 time series
and the GCC time series from different grids in the NSCam images; 6) Use
linear regression to calculate the mean squared deviation (MSD) and
correlation coefficient (R) between the remote sensing time series
RSðtÞ ¼ fRSðt1Þ;RSðt2Þ;…;RSðtnÞg and the NSCam time series
NSCamðtÞ ¼ fNSCamðt1Þ;NSCamðt2Þ;…;NSCamðtnÞg in different grids,
selecting the grid with the lowest MSD and highest R as the
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corresponding grid for the target pixel (Fig. 2). Obtain the linear
regression results to establish the relationship between GCC and EVI2, as
shown in Eq. (2); 7) Using Eq. (2) and daily GCC values from the corre-
sponding grid cell, calculate the daily EVI2 values to supplement the
observed EVI2 time series from Sentinel-2; 8) Apply Savitzky-Golay
filtering to form the final fused daily EVI2 time series for the target pixel.

RSðtiÞ¼ a�NSCamðtiÞ þ b (2)

where ti is the day of year, RSðtiÞ and NSCamðtiÞ is the EVI2 and GCC
values at the time of ti captured by Sentinel-2 and NSCam, a and b are
slope and intercept of the linear regression result.

4. NSCam for CSA

4.1. NSCam network in monitoring long time series with PhenoCam

Long-term continuous monitoring is crucial for understanding his-
torical crop phenology and provides essential basis for current crop
growth management. The NSCam provides hourly monitoring data, of-
fering several advantages over remote sensing data in this domain.
Firstly, NSCam enables denser and more accurate reconstruction of his-
torical crop phenology. Secondly, it allows for more real-time acquisition
of current crop growth conditions, making it more sensitive to changes in
growth status. Consequently, this allows for better assessment of current
crop growth conditions compared to historical averages, enabling timely
anomaly warnings and helping agricultural managers take appropriate
measures promptly. Combining data from the PhenoCam Network,
which has been operational since 2008, we can achieve long-term
continuous and dense monitoring of the observed fields.

Based on this procedure, we conducted a long-term time series
monitoring analysis of a monitored plot in Jiangsu, using the NSCam and
PhenoCam Network (Fig. 3). According to photos taken by PhenoCam
(Fig. 3b) and NSCam (Fig. 3c), the monitored plot is planted with rice, a
major grain crop in Jiangsu and southern China. Rice in this region is
typically sown in early April, transplanted in May, and harvested from
September to October. The hourly observation data (Fig. 3d) and the
fused daily time series curves reflect the time series of phenological
changes. We can observe a rapid increase in EVI2 starting from April to
May each year, corresponding to the emergence and growth of rice.
However, during the transplanting period from late May to early June,
the EVI2 drops rapidly due to field flooding, then rises again in June and
July, reflecting the rapid growth during the tillering stage. Subsequently,
as rice matures, the EVI2 begins to decline until harvest. This annual
cycle of rice phenology forms a long-term phenological observation
dataset. As of the most recent available surface observation data on 22nd
June in 2024, the plot shows that the rice in the field has finished the
post-transplanting stage. Additionally, the calculated vegetation index
results are consistent with historical trends, indicating no abnormal crop
growth detected at this time. These monitoring results help agricultural
managers grasp more precise historical crop phenology information and
provide real-time reflections of current crop growth conditions.
Comparing current data with historical data facilitates timely
Fig. 2. Spatial match of NSCam image and remote sensing imagery. The red dot is the
(take the NSCam in Tibet as an example). The yellow and green frames illustrate
NSCam image.

5

interventions in case of growth anomalies due to meteorological disasters
or pest infestations, supporting CSA.
4.2. NSCam network in capturing agricultural land changes

The dense monitoring time series obtained from NSCam and satellite
remote sensing data can enhance the detection of abrupt and gradual
agricultural land changes, effectively complementing the sparse obser-
vational results from satellite data alone. This is particularly crucial for
agricultural monitoring, as abrupt weather changes (such as a sudden
drop in temperature) can have a marked impact on crop growth. If sat-
ellite imagery during such periods is unavailable, critical information
might be missed, hindering timely remedial or intervention measures.
Human activities also play a significant role in causing agricultural land
changes. For instance, the harvesting of mature crops leads to immediate
changes in surface vegetation cover. Such changes are difficult to capture
promptly using satellite data alone. The integration of NSCam data al-
lows for detailed monitoring of these ground changes on a daily, or even
hourly scale. This study addresses the two primary factors influencing
agricultural land changes: climate change and human activities. Using
fields in Tibet and Henan and grassland in Inner Mongolia, as case
studies, we demonstrate the capability of NSCam to augment satellite
remote sensing data for detecting surface changes, thereby underscoring
its importance for CSA.

As illustrated in Fig. 4, we employed the method detailed in Section
3.3 to integrate hourly monitoring data from NSCam at Tibet site with
data from Sentinel-2 and Landsat satellites. The monitored crop at this
site is highland barley, a major grain crop on the Tibetan Plateau known
for its cold resistance and short growth period. The dense observation
data provided by NSCam since 5thMay 2024 allowed us to capture subtle
crop growth changes that might be overlooked by satellite data alone. A
notable observation is the significant decline and fluctuation in the EVI2
from 30th April to 15th May, following a period of steady increase before
the end of May. Correlating this with local weather data, we identified a
clear drop in temperature during this period (as depicted by the tem-
perature curve in Fig. 4). The snowfall on May 10, in particular, impacted
the growth of highland barley. The NSCam Network effectively captured
this weather event and its impact on crop growth, as reflected in the
vegetation index time series. Additionally, the short warming period on
May 8–9, which caused a slight increase in the vegetation index and
would have beenmissed by satellite data alone, was clearly detected. The
fused EVI2 time series closely matched the local temperature variations
during this period. Following mid-May, a rapid rise in local temperature
facilitated swift growth of highland barley in the monitored fields.
However, a slight drop in temperature in early June interrupted this
growth trend, a change that was also captured by our monitoring
network. Therefore, the NSCam Network, when combined with satellite
data, can accurately reflect the abrupt and subtle changes in crop growth
conditions induced by weather or climate variations. This integration
provides timely warnings about the impacts of abnormal weather con-
ditions (such as prolonged low temperatures) on crop growth, enabling
the implementation of necessary measures promptly.
location of the NSCam, and the green dot is the target pixel used for data fusion
the approximate spatial correspondence between remote sensing imagery and



Fig. 3. Long-term monitoring during October 2017 to June 2024 by NSCam and PhenoCam in Jiangsu. a) Google Earth imagery of the site, the red dot is the location
of both cameras; b) image taken by PhenoCam; c) image taken by NSCcam; d) calibrated observations and fused EVI2 daily time series.

Fig. 4. Highland Barley monitoring during April to June of 2024 by NSCam Network site in Tibet. a) Sentinel-2 images of the site, the red dot is the location of the
NSCam; b) original observations of NSCam and satellite, and fused EVI2 daily time series against three-day average temperature; c) NSCam images which captured the
brief snowfall on 10th May 2024.
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For monitoring agricultural land changes caused by human activities,
the NSCam installed in Henan was selected as a representative study
region to illustrate the effectiveness of the NSCam Network in capturing
agricultural land changes due to harvesting. Monitoring such agricultural
land changes aids in the precise observation of crop phenology and
growth cycles. The monitored field is planted with winter wheat, a major
grain crop in Henan and northern China, typically maturing and being
harvested in early June. Generally, to maximize agricultural land use,
local farmers usually plant summer corn after harvesting winter wheat.
The NSCam at this site recorded this entire process, from winter wheat
Fig. 5. Agricultural land monitoring during May to June of 2024 by NSCam Network
NSCam; b) original observations of NSCam and satellite, and fused EVI2 daily time ser
2024, and emergence of summer corn on 22nd June 2024.
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maturity to harvesting and subsequent summer corn planting (Fig. 5).
By integrating NSCam and satellite remote sensing data, we observed

a stabilizing EVI2 at a lower value after mid-May. On 7th June, the fused
EVI2 time series curve in Fig. 5b shows a sudden change due to the
harvesting activity. Notably, this abrupt change was not precisely re-
flected in the satellite remote sensing data, as there was no sudden
fluctuation in the EVI2 observed by satellites around 6th June. Further-
more, after harvesting winter wheat, summer corn was planted in the
monitored field. As the corn emerged, a clear upward trend in the fused
EVI2 time series can be observed after 12th June. This change was also
site in Henan. a) Sentinel-2 images of the site, the red dot is the location of the
ies; c) NSCam images which captured the harvesting of winter wheat on 6th June
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not reflected in the EVI2 calculated from satellite remote sensing data in
time, shown by the continued low values and sudden increased value on
27th June for the blue observation points in Fig. 5b. This discrepancy
could be due to thin cloud cover in the satellite images during this period
(Fig. 5a). These experimental results demonstrate that the NSCam
Network is highly effective in capturing abrupt agricultural land changes
caused by both climatic events (e.g., temperature drops as shown in
Fig. 4) and human activities (e.g., crop harvesting as shown in Fig. 5).
Additionally, the NSCam Network is sensitive to subtle phenological
changes in crops, such as corn emergence (Fig. 5). Therefore, the NSCam
Network provides a crucial data foundation for supplementing satellite
remote sensing data with dense observation time series, which is sig-
nificant for implementing CSA.

In addition to cropland, pasture is another important type of agri-
cultural land. This study also conducted phenological monitoring of
pasture in Hulunbuir, Inner Mongolia, using a combination of NSCam
and satellite remote sensing data. The Hulunbuir grassland, located in
northeastern China, is a world-renowned natural pasture. However, since
the 21st century, climate change and human activities have led to land
desertification and grassland degradation in this ecologically fragile re-
gion. Monitoring the phenology of pasture in this area can provide real-
time information on grass growth, aiding in grassland conservation ef-
forts. The monitoring results shown in Fig. 6 indicate that since May, the
vegetation cover in the Hulunbuir grassland has been gradually
increasing. It is important to note that although grassland growth is also
influenced by temperature, it exhibits a lag compared to the barley in
Fig. 4. For example, the persistent low temperatures in late May resulted
in stagnated grass growth in early June, while the temperature rise in
early June facilitated further growth of the grassland by mid-June.

5. Discussion

In this paper, we explore the application of near surface camera
technology in the monitoring of agricultural land and its role in achieving
climate-smart agriculture. Our results prove the advantages of moni-
toring ground vegetation using NSCam Network and also the great po-
tential value of applying this technology into CSA.

With the high spatial and temporal details (hourly to daily observa-
tions) to capture rapid phenological changes, NSCams make a direct link
between observations and individual plants/canopies [36]. Also, NSCam
records can be used to validate and scale up to landscape/satellite ob-
servations. Therefore, it creates many new possibilities for monitoring
agricultural fields. Firstly, recording from NSCams can be integrated with
satellite imagery to map agricultural land changes with high resolution
and high frequency [23,64]. Secondly, it provides a new visual angle for
monitoring vegetation and crop status automatically [65]. Besides,
NSCams also provide sufficient ground truth for vegetation phenology,
human activities, and extreme weather events [23].

It is worth mentioning that satellite remote sensing products can be
integrated with near-earth cameras to achieve complementary results
[66]. NSCams at the ground or plot scale provide an important ground
reference for large-scale monitoring of satellites (usually at a global or
regional scale) [55]. With the advantage of high spatial resolution in
NSCams, the combined use of these two data sources can improve
monitoring accuracy [61,67]. As for time scale, continuous monitoring of
cameras improves the observing frequency of satellites, which could
generate continuous records of vegetation changes that are ignored in
satellites’ observations [68]. In addition, NSCams are less affected by
weather and atmospheric conditions due to the differences in observation
angle and distance, its observation data provide key supplementary data
when satellite data is missing.

We admit that some aspects limited the development of NSCam's
application in CSA. Firstly, NSCams are typically deployed on fixed
structures or platforms, which limits their coverage area compared to
satellite or high-altitude UAV systems [40,64]. Consequently, monitoring
large agricultural fields or extensive regions requires multiple
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deployments, increasing operational complexity and cost [43]. Consid-
ering the differences in data collection density and angles between
NSCams and satellite remote sensing, a potential solution is to develop
the relationships between the GCC for different land types and the
satellite-based EVI2. These relationships can then be used to reconstruct
the gap-free EVI2 time series for remote sensing imagery near the
monitoring site. Furthermore, the deployment, maintenance, and data
retrieval from NSCam Network can be labor-intensive. Regular adjust-
ments and calibrations are necessary to ensure data accuracy, which
demands significant human and financial resources [36]. There is also a
lot of space left to deal with inconsistency when integrating results from
satellite remote-sensing products and that from NSCam photos [69,70].

In the future, the technological improvements of the digital camera
used in our network will be developed, such as enhancements for 4G
signal reception in complex field environments, more flexible and
controllable shooting angles, and a more efficient data management
platform. Additionally, with the development of data fusion technology
which improves data processing efficiency and accuracy, thus enhancing
ground-to-satellite scale conversion capabilities, NSCam Network will
have wider applications in achieving CSA. First of all, photos from this
network can provide essential calibration and validation for satellite
remote sensing data, ensuring data accuracy and reliability [49,58]. In
addition, continuous time-lapse images from this network allow precise
observation of plant growth, flowering, and fruiting, offering critical
information for ecological and climate change research [41,71]. On a
larger scale, this network also monitors changes in ecosystem structure
and function, including vegetation cover, biodiversity, and land use
changes [23,35,36,72]. In some circumstances, continuous monitoring of
NSCam Network could capture subtle or abrupt environmental changes,
such as seasonal variations and extreme climate events [23]. For
example, our site in Tibet captured dramatic weather changes and
resulting environmental changes in a day that snow quickly covered the
grass in the evening, and the snow cover melted at noonwithout affecting
the cattle and sheep grazing in the afternoon.

Besides, observational data from NSCam Network can be used to
develop and validate ecological process models, supporting ecosystem
management and decision-making [73,74]. Those cameras could serve as
educational tools as well, raising public awareness about ecosystem dy-
namics and environmental changes, and fostering public engagement in
ecological protection and scientific research [75–77]. We also believe
this NSCam Network could facilitate data exchange and collaborative
research with international networks like PhenoCam Network (https:
//phenocam.sr.unh.edu/webcam/) [40,64], European Phenology Cam-
era Network (http://european-webcam-network.net) [78], Phenological
Eyes Network (http://pen.envr.tsukuba.ac.jp) [79], Australian Pheno-
Cam Network (http://phenocam.org.au/) [80], promoting global scien-
tific cooperation and knowledge sharing.

6. Conclusion

The paper explores the application of near surface camera technology
in the phenological monitoring of agricultural fields and its role in
achieving CSA. This study begins with a review of the advancements in
the application of near surface camera technology in the agricultural
field, particularly within the realm of CSA. It then introduces our novel
NSCam Network and its proof-of-concept applications. The preliminary
monitoring results illustrate that integrating NSCam data with remote
sensing imagery greatly enhances the temporal details and accuracy of
agricultural land changes caused by abnormal weather and human ac-
tivities. Along with its potential applications and existing limitations in
the context of CSA, we discuss the necessity of establishing a national
network of near surface cameras in China. By analyzing the image data
captured by NSCam, we can more accurately assess key agricultural pa-
rameters such as crop health, pest and disease incidence, and soil mois-
ture levels. This information is crucial for developing agricultural
management strategies that are resilient to climate change.

https://phenocam.sr.unh.edu/webcam/
https://phenocam.sr.unh.edu/webcam/
http://european-webcam-network.net
http://pen.envr.tsukuba.ac.jp
http://phenocam.org.au/


Fig. 6. Pasture monitoring during May to June of 2024 by NSCam Network site in Inner Mongolia. a) Sentinel-2 images of the site, the red dot is the location of the
NSCam; b) original observations of NSCam and satellite, and fused EVI2 daily time series against three-day average temperature; c) NSCam images which captured the
growth of grass.
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